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1. INTRODUCTION

The radiative effects of clouds on operational sensors and their associated impacts on systems in use by the De-
partment of Defense (DoD) are generally not well understood. In the case of most DoD operations, it is features of
clouds at relatively small spatial scales that are of most importance. A typical infrared seeker on a guided munition,
for example, must be able distinguish targets from a possible cloudy background at spatial scales that are equivalent
to individual cumulus cloud elements. In this regime, the inhomogeneous three-dimensional nature of cloud fields is
significant and traditional methods of treating clouds as homogeneous layers in radiometric calculations break down.

For the present work, we investigate the modeling of cloud radiative eflects at very fine scales (e.g., tens of meters).
At these spatial scales, the plane parallel assumptions often invoked by large-scale treatments of clouds are not valid
and the full 3D inhomogeneity of cloud fields must be considered.

Radiative transport models that are applicable to finite clouds at cumulus scales are not widely available. Treatments
of this problem typically involve the simulation of cloud radiative interactions using stochastic Monte Carlo methods
or diffusion-limit approximations to the full radiative transfer equation. Although these methods are somewhat
successful in certain applications, they each have certain undesirable attributes. Monte Carlo methods, for example,
are inherently noisy and require a large number of photon simulations to produce useful results. To compensate
for this, Monte Carlo simulations are typically run in reverse sense in that a given view geometry is prescribed and
individual photons are tracked as they interact with the cloud media backward in time.

Recently, a new tool has emerged to model various transport phenomena based on a particle method using discrete
cellular automata techniques. To date, the primary applications of this method are related to the field of computational
fluid dynamics. These so-called lattice-gas methods simulate a complex dynamical system by constructing a microscale
world in which space, time and velocity are discretized and fictitious particles interact with each other and their
environment. In the macroscopic limit, these particles describe the time-dependent solution to a system of PDEs (e.g.
Navier Stokes fluid flow) without constructing any finite-difference (or finite element) approximations to the PDEs
themselves. Boon (1991) gives a review of lattice-gas methods for computational fluid dynamics applications.

From the field of lattice-gases, a separate, but closely related method has emerged in which the modeling of particles
occurs at a scale that is intermediate between the microscale  of the individual particles and the macroscale where the
modeled physics is observed. In this intermediate, or mesoscale, one describes distributions of the particles rather than
the particles themselves. This technique is known as the lattice Boltzmann  method (cf., Succi, 1991 for a review).
The advantage of modeling at the mesoscale  is that the scale of the problem can be increased and the noise that is
due to the underlying assumptions of molecular chaos in lattice-gas methods is eliminated. One of the disadvantages
of this approach, however, is that correlations between individual particles are lost due to the fact that particles are
treated as ensembles.

In the present work, we have adapted the lattice Boltzmann  method to the problem of three dimensional radiative
transport though inhomogeneous liquid water clouds. This is a novel approach to the problem and is potentially
a powerful tool for modeling cloud radiative properties at the scales necessary for sensor simulation. It has several
desirable features as compared to other particle-based methods. In particular, lattice Boltzmann  methods operate
in a forward-in-time mode and produce results which are independent of the view geometry. Another significant
feature of the method is that the algorithms are inherently efficient on parallel computer architectures due to the
local computation involved.

In Section 2 we describe the lattice Boltzmann  method in detail and its application to cloud radiation. Section 3
presents some results derived from the method using idealized simple clouds as well as fully 3D complex cloud geome-



tries. These results are compared with Monte Carlo simulations. In Section 4, we discuss the potential application
and limitations of the lattice Boltzmann  method.

2. METHOD

The Boltzmann  equation for linear photonic transport can be developed by considering the change, dlV, in time dt
of the number of photons with velocity in d3v about v which are located in a small volume V with surface S about
the point r. Then,

where IJ (r, v, t) is the expected number of photons in d3r about r with
time interval dt, the balance condition on dN is:

dN = – net number flowing out of S
— number suffering collisions
+ number scattered into d3v

(1)

velocities in d3 v about v at time t. In the

+ number produced by sources within d3r
— number removed by sinks within ~r.

(2)

A Boltzmann  equation can be developed from Eqs. (1) and (2):

B@(r,  v, t) = q(r, v, t), (3)

where the Boltzmann  operator, B, is defined as,

B-~+v. V+vu(r, v)–
/

V’O(V’  + v, r)dv’, (4)

where a(r, v) is a scattering cross section and q(r, v) represents the net source of photons. Classical linear transport
theory is aimed at finding solutions to Eq. (3) (cf. Case and Zweifel, 1967).

In the lattice Boltzmann  method, we wish to construct a form of the Boltzmann  equation analogous to Eq. (3), but
where space and time (hence velocity) are discrete. To accomplish this, we define a set of lattice vectors, e i, (i = 1..13),
where i is a lattice direction index and B is the total number of directions (velocities) in the lattice. Then, the lattice
Boltzmann  equation can take the form,

Afi = f~(r + Ar, t + At) – fi(r, t) = –Cli(r, t), (5)

where, fi represents the expected number of photons at a node in the lattice traveling with unit speed in the direction
of ei and Sli is a collision operator which acts to redistribute the photons traveling in each of the lattice directions
at each lattice node. In the present context, this collision term represents the physics of the photon transport (e.g.
scattering, absorption and emission).

The lattice Boltzmann  method can be considered as two distinct steps–the first being the collision operation
described by Eq. (5) and the second a propagation or streaming step. In streaming, the values of each of the fi at
each node are simply moved to the adjacent lattice node pointed to by the associated ei. This step is key to the
scalability of the lattice Boltzmann method because streaming happens synchronously. In other words, the information
contained in the entire set of photons is moved at once everywhere in the lattice. This is in contrast to Monte Carlo
methods where each photon moves independently of the others due to the independent nature of each photon.

The collision term may take any number of forms; however, one convenient form often used in fluid transport
problems is a single-time relaxation towards equilibriume..g.,

f2i = ~(f~ ‘f;), (6)



where T is a relaxation parameter and f; is an equilibrium distribution function for the lattice photons. This form
of the collision term is analogous to the so-called BGK approximation to the Boltzmann  equation and is commonly
known as the lattice-BGK equation.

The equilibrium distribution function, f;, is difficult to determine in the general case of linear transport. However,
in the present case, we may construct f 3* rather simply by considering the “microphysics” of the photon interactions.
For simplicity, consider a case of pure isotropic scattering (i.e. no absorption or emission). In this case, the equilibrium
distribution function is equal in all lattice directions (i.e., jz = cork). The only relevant constraint is that energy be
conserved during the collision. This is equivalent to:

5 fla =0<
i= 1

This condition implies that,

f:= PIB.

(7)

(8)

It is apparent from the form of the collision operator Eq. (6) that the relaxation parameter, T, governs the magnitude
of the scattering in a collision. There are two limiting cases involving ~ to note. For T = 1, Eq. (6) reduces to j; = f;,
where f; is the after-collision value of .fa. This represents a complete scattering of all of the incident photons. At the
limit of ~ = co, we have ~~ = ~~, which can be interpreted as pure transmission (no scattering). In general, r, is a
measure of the (scattering) optical depth and is treated as a spatially varying quantity.

To determine the relationship between optical depth, 6, we consider a special case of the equilibrium distribution
function-specifically,

f:= ;fi. (9)

In this case, we have effectively eliminated the contribution of scattered photons being re-scattered into the fi direction.
This eliminates the effects of multiple scattering and allows a direct comparison with Beer’s Law,

l(z) = l(0)e-bz, (lo)

where I is radiometric intensity and x is a measure of distance.

The comparison of the lattice Boltzmann  radiative transport model to Beer’s law proceeds by considering the ratio
f~/fi for a single  collision (or equivalently over a single  grid space) for the equilibrium distribution given by Eq. (9).
We have from Eqs.(5, 6 and 9):

(11)

By treating the jis as intensities, we have by comparison to Eq.(9),

‘=-’~[l-:(l-;)] (12)

Nonconservative and anisotropic scattering are treated in the lattice Boltzmann  method via a simple generalization
of the equilibrium distribution function Eq. (8):

(13)

where the tjj represent discrete values of the scattering phase function for the angle between ti and ~j and c is chosen
such that,



c > 1 ~ Emission
c = ~ + c~servati~

0< c <1 + Absorption
(14)

3. RESULTS

The scattering of photons gas from a columnar beam of light entering a homogeneous gas was shown in an earlier
work (Mozer and Caudlll, 1995). For this case, it was shown that the results of the LBRTE method agreed well with a
traditional forward Monte Carlo approach. Here we extend this demonstration to include a inhomogeneous scattering
medium–specifically a simulated cumulus cloud.

A physics and fractal-based cloud model (Cianciolo,  1996) was used to generate a field of cloud liquid water content
representative of a cumulus cloud. Values of liquid water content were calculated on a cubical grid with 2-km sides
and 2-m spacing. For thk case, the optical depth across a volume element is considered proportional to the liquid
water content in that voxel.

Figure (1) shows the results of a preliminary LBRTE calculation through the synthetic cloud field. In this case,
the illumination is from the top of the cloud field (zenith angle zero) and no diffuse sources are included. The figure
shows the field of photons exiting the computational cube at each visible face. Due to the geometry of the problem,
all of the photons emitted along the lateral faces of the cube are a result of scattering within the volume. The bottom
face represents transmission of the incident flux through the cloud volume.

Fig. 1. Lattice Boltzmann radiative transfer calculation through a field of liquid water content representative of a cumulus
cloud. The illumination is from the top. The images formed on the faces of the cube represent the photons exiting that face.
No diffuse sources were included in this calculation.
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3.1 Timing

I

One of the major benefits to the LBRTE approach is its efficiency on a parallel computer platform. We have
calculated the CPU times required to perform the LBRTE calculation through the cumulus cloud shown in Fig. (1)
on a parallel cluster of Pentium-based workstations. Figure (2) shows in inverse of the execution time in seconds
versus the number of processors used in the calculation. Also shown in Fig. (2) are the timing results for a forward
Monte Carlo (MC) code which tracked 2 x 106 individual photons.

It is apparent from the figure that the LBRTE methods are more efficient that than the MC calculation for the cases
shown. However, the MC results exhibit a nearly perfect linear scalability whereas the LBRTE results depart from
the straight line shown in the figure. By itself, this fact leads to the conclusion that the MC method would be more
efficient when many more processors were used. However, one must consider the level of noise required in the final
result. We chose to run the MC code using 2 x 106 photons because it is roughly equivalent to the number of sites in
the LBRTE lattice. However, the images produced by the MC method (not shown) contain a large amount of noise.
In order to suppress this noise, more photons must be run through the cloud. This leads to longer execution times.
Therefore, when comparing the efficiency of the LBRTE and MC methods for a given problem, one must specify the
maximum amount of noise which can be tolerated in the result.
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Fig. 2. Timing results for calculation shown in Fig.(1). Squares represent results for LBRTE calculation. Triangles are for a

Monte Carlo calculation involving 2 x 106 photons. The solid and dashed lines represent perfect linear scaling for ezwh  method
respectively

4. CONCLUSION

The Lattice Boltzmann  Radiative Transfer Equation (LBRTE) method seems to be an efficient and effective method
to calculate the transport of monochromatic radiation through a non-homogeneous medium. Because the LBRTE
method performs an explicit streaming of photons in a discrete lattice, it is particularly adept at solving problems
where multiple scattering is significant. The LBRTE method is capable of producing accurate quantitative results for
cases of isotropic scattering as well as for a Rayleigh phase function. Problems involving a highly peaked scattering
phase require many lattice dkections  to resolve the angular streaming which reduces the efficiency of the LBRTE



method, Although this is a severe limitation to the method, it is expected that the LBRTE scheme will be useful for
some problems–such as the scattering of microwave radiation by atmospheric clouds.
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